Neurocontrol of a Cantilever Beam
نویسنده
چکیده
The civil engineering community is currently moving towards the continuous monitoring of civil structures in order to forecast their unavoidable failure with enough precision. So-called smart technologies seem to be well adapted to this specific task. For a civil structure, such as a bridge or a dam, a monitoring smart system often includes a set of sensors, whose data is passed onto a controller. The latter analyzes the data and outputs commands to a set of actuators that will modify the structure properties in response to the new sensors' environment. Therefore, the structure can continuously adapt to its surrounding environment. Artificial neural networks are electronic devices whose structure resembles the structure of the human brain. Such devices can be trained to output desired signals when fed with specific inputs. Consequently, neural networks can theoretically act as controllers in monitoring smart systems. This thesis first presents artificial neural networks in details, since this topic remains unfamiliar in the civil engineering literature. An entire chapter is also devoted to the training of these artificial neural networks that are likely to be used in civil engineering applications. The thesis then introduces the new concept of neurocontrol, i.e. control using neural networks. Finally, a simulation run under MATLAB applies this concept of neurocontrol to a cantilever beam supporting fluctuating loads. Thesis Supervisor: Jerome J.J. Connor Title: Professor, Department of Civil and Environmental Engineering
منابع مشابه
Power optimization of a piezoelectric-based energy harvesting cantilever beam using surrogate model
Energy harvesting is a conventional method to collect the dissipated energy of a system. In this paper, we investigate the optimal location of a piezoelectric element to harvest maximum power concerning different excitation frequencies of a vibrating cantilever beam. The cantilever beam oscillates by a concentrated sinusoidal tip force, and a piezoelectric patch is integrated on the beam to gen...
متن کاملNonlinear Vibration Analysis of a cantilever beam with nonlinear geometry
Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...
متن کاملA Hybrid Stress Plane Element with Strain Field
In this paper, a plane quadrilateral element with rotational degrees of freedom is developed. Present formulation is based on a hybrid functional with independent boundary displacement and internal optimum strain field. All the optimality constraints, including being rotational invariant, omitting the parasitic shear error and satisfying Fliepa’s pure bending test, are considered. Moreover, the...
متن کاملModeling and modal analysis to oscillations of IPMC cantilever beam and simulating as an actuator
The purpose of this article is modal analysis of ionic polymer metal composite beams, then briefing the system to the unique parameters to help in up modeling of the actuator. In this paper at first using of Mathematical analysis and Closed form transfer function of cantilever beam dynamic response to the forces of different inputs (intensive and continuous) is calculated and for different type...
متن کاملTracking and Shape Control of a Micro-cantilever using Electrostatic Actuation
In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended ...
متن کامل